Review Problems

January 13, 2017

- 1. (Fall 2004, Exam 1, #7) A solid S has a square base in the xy-plane given by $\{0 \le x \le 4, -2 \le y \le 2\}$. The cross-sections of S perpendicular to the x-axis are triangles with height h(x) = x(4-x). Find the volume of S.
- 2. (Fall 2006, Exam 1, #5) Find the area bounded by the curves $y = 6x^2$ and y = 6x + 12 in the interval [0, 3].
- 3. (Fall 2006, Exam 1, #6) Find the area bounded by the curves $y = 12 6x^2$ and y = 6|x|.
- 4. (Fall 2006, Exam 1, #8) The volume of the solid obtained by rotating the region bounded by the curves $x = -y^2 + 2y$, x = 1, y = 0 and y = 2 about the line x = 1 is given by the integral
 - (a) $\pi \int_0^1 (1 y^2 + 2y) dy$ (b) $\pi \int_0^2 (1 - y^2 + 2y) dy$ (c) $\pi \int_0^2 (1 - y^2 + 2y)^2 dy$ (d) $\pi \int_0^1 (1 - y^2 + 2y)^2 dy$ (e) $\pi \int_0^2 (1 - y^2 + 2y)^2 dy$
- 5. (Fall 2007, Exam 1, #6) The area of the region between the curves $y = \frac{x}{2} + 4$, and $x = y^2 4y$ is given by
 - (a) $\int_{-4}^{0} (y^2 4y \frac{x}{2} 4) dx$ (b) $\int_{-4}^{0} (\frac{x}{2} + 2 - \sqrt{4 + x}) dx$ (c) $\int_{2}^{4} (6y - 8 - y^2) dy$ (d) $\int_{2}^{4} (7y - 8 - y^2) yx$ (e) $\int_{2}^{4} |y^2 - \frac{9y}{2} - 4| dy$
- 6. (Fall 2007, Exam 1, #7) The integral

$$\int_0^1 (\sqrt{x} - x) \, dx$$

represents the area of the region bounded by the curves

(a)
$$y = x^{2}$$
 and $y = x$
(b) $x = y^{2}$ and $x = y$
(c) $x = y^{2} - 2$ and $x = y$
(d) $y = 6x + 2$ and $y = x^{2}$
(e) $y = x^{2}$ and $y = 0$